PROCESSING COSTS

D
DRASTICALLY A
REDUCING
F
WITH DELTA LAKE A=

Generoso Pagano & Mauricio Jost

©2024 Databricks Inc. — All rights reserved

About us

Generoso Pagano

* Principal Data Engineers @Amadeus

* Mostly having fun with Scala, Spark and Delta Lake

AMaDEUS | & databricks

Mauricio Jost

© Amadeus IT Group and its affiliates and subsidiaries

dMdDEUS

Making travel simpler,
smarter and smoother.

dAMaDEUS | & databricks

73

Destination
Payments management
customers S organizations

operators
management

4 0 O + companies 24 O

Airlines players Fouy

a M a D E u S operators

Strategic Alliances and Partners

Travel
agencies

TRV I= T
mm Microsoft =% accenture

22

I nsurance
groups

Online 1M +

travel
agencies Hotel

properties

Corporations

33 79

Cruise &
ferry lines Ground

81 25

Mobility Rail
providers operators

handlers

© Amadeus IT Group and its affiliates and subsidiaries

Our product

Challenging requirements
e 100s of output tables
* Several years of historical data

e History consolidation

dMaDEUS | & databricks

Sﬁqaéri? %
A

< databricks DELTA LAKE

A complex application

* Join/merge intensive
e 1000s of Spark jobs

© Amadeus IT Group and its affiliates and subsidiaries

Our cost reduction journey

Pilot daily
cost (%)

M1: baseline

/ cost: 100%

M2: addressed thread contention

M3: z-order, dfp

M4' photon, dv

M5: revised history consolidation
I /cost: 1%

AMaDEUS | & databricks

-99%

Milestones

© Amadeus IT Group and its affiliates and subsidiaries

Journey Tracker #1

M1: Baseline (beginning of our journey)

* Functional correctness \/

e Technical stability v/

* Throughput below expectations A\

1688 -

8O

&0

40

208

cluster CPU last hour

13:28 13:48 14:00

e CPU usage below 10% A\

AMaDEUS | & databricks

M1

Cost

M2

M3
M4
M5

Milestones

bsidiaries

nd su

© Amadeus IT Group and its affiliates a

Why is CPU usage so low?

Sﬁ*‘hﬁz{ 45 Jobs Stages Storage Environment | Executors ~ SQL/DataFrame

* But... JSON parsing is CPU intensive!

Task
Time
RDD Storage Disk Active Failed Complete Total (GC Shuffle Shuffle Thread
Address Status Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read Write Dump
Y 192.168.1.21:44291 Active 8 45.1 MiB 0.0B 8 1] 0] 44449 44449 4.2 2433 0.0B 0.0B Thread
ost-mortem par 13663 mn@ G Dume
MiR <\
— Unnamed jobs A\
ID Thread Name Thread State Thread Locks
L' tt I k H f t H & 68 Executor task launch worker for task 0.0 in stage 4202.0 (TID 33609) BLOCKED Blocked by
I e WO r e rS I n O rl I Ia IO n Lock(java.util.concurrent. ThreadPoolExecutor$Worker@2085517166)
B89 Executor task launch worker for task 1.0 in stage 4202.0 (TID 33610) RUNNABLE Lock{java.util.concurrent. ThreadPoolExecutor$Worker@1442363215),
Monitor(java.util. Properties@2119400838)
64 Executor task launch worker for task 2.0 in stage 4202.0 (TID 33611) BLOCKED Blocked by Thread 73 Lock(java.util. Properties@2119400838)

Lock(java.util.concurrent. ThreadPoolExecutor$Worker@1063102484)

* Live Spark Ul
— What are workers doing? |
— Most task threads BLOCKED A i {}
— Thread contention (shared lock) A\ o o
!)

Task Threads in Worker JVM

dMaDEUS | & databricks

© Amadeus IT Group and its affiliates and subsidiaries

Addressing Thread Contention

* The culprit
— Scala closure
— Third-party library
— Cache implementation

e Alternatives
— Use built-in SQL functions
— Change cache implementation v

* Change done, we retried and...
— All threads RUNNABLE
— Much better CPU usage v

dMaDEUS | & databricks

Thread Name

Executor task launch worker for task 0.0 in stage 1.0 (TID 1
Executor task launch worker for task 1.0 in stage 1.0 (TID 2
Executor task launch worker for task 2.0 in stage 1.0 (TID 3

)
)
)
Executor task launch worker for task 3.0 in stage 1.0 (TID 4)
Executor task launch worker for task 4.0 in stage 1.0 (TID 5)

)

Executor task launch worker for task 5.0 in stage 1.0 (TID 6

100 4 cluster CPU last hour
l

|
80 |

60

Percent

40

20

0+

16:20 16:40

B User MNow: BO.7% Min: 5.8% Avg: 80.0%
OMNice Now: ©.0% Min: ©0.0% Avg: ©0.0%
B System Now: 1.1% Min: ©0.3% Avg: 1.3%
B Wait Now: ©.0% Min: ©0.0% Avg: ©0.0%
O Idle Now: 18.2% Min: 10.8% Avg: 18.7%

Max:
Max:
Max:
Max:
Max:

17:00
88.8%
0.0%
6.3%
0.0%
93.8%

Thread State
RUNNABLE
RUNNABLE
RUNNABLE
RUNNABLE
RUNNABLE
RUNNABLE

© Amadeus IT Group and its affiliates and subsidiaries

Journey Tracker #2

M?2: Addressed thread contention

e Great cost reduction (-77%) \/

* Costs still above target A\
« Difficult investigations A\

Metrics Unlocking
(Best Practices)

dMaDEUS | & databricks

Cost

-77%
M2
M3
M4
M5
Milestones

© Amadeus IT Group and its affiliates and subsidiaries

Metrics Unlocking (Best Practices)

Reproduce
Perf. Problems
in Notebooks

To iterate fast, understand the
problem, identify metrics to
measure it and solve it

Name every
single SparkJob
in the code

To quickly associate a Spark Job or
SQL Query in the Ul to the right
section of code

Persist Spark
Events for post-
mortems

To dig into Spark Jobs stats at any
time, compare and understand
them in depth

Use Cluster or
Pool Tags to
measure costs

To compare deployment costs &
breakdown via Cloud Provider
cost dashboards

https://github.com/
AmadeusITGroup/spark-perf-hikes

"Scenario
reproduced”

SCALA

SCALA

val sc = spark.sparkContext
sc.setJobDescription("partl")
// <partl job here>

val sc = spark.sparkContext
class L extends SparkListener {..}
sc.addSparkListener(new L())

Jobid ¥ Description

0 part1

show at ﬂconsole>:2H
(]

- - - e dommm e +---

| jobId | jobDesc | exCpuSecs |..

Tags ©

L " \

~ Automatically added tags

Vendor Databricks

dAMaDEUS | & databricks

© Amadeus IT Group and its affiliates and subsidiaries

Why are network costs so high?

* Observations
— Network is 70% of the costs
— Join intensive application
— small batches, joined with big tables
— No data-skipping-friendly data layout

* Main suspect: Read Amplification!

e How do we assess that?

dMaDEUS | & databricks

select * from BIG join SMALL on BIG.key

where SMALL.column_x = ...

SQL / DataFrame tab

D Description

123 Join tables: BIG x SMALL
* Qutput rows in join

BroadcastHashJoin (10) rows output

* Rows read in the BIG table

number of files pruned
Scan parquet (1) number of files read

rows output

100

0
18
12,556,824

11

© Amadeus IT Group and its affiliates and subsidiaries

Z-ordering

Co-locates related data in the same files
— Enhances data skipping!

Done within an OPTIMIZE

OPTIMIZE airports ZORDER BY country_code

CONFIG

* Ensure column statistics are there!

delta.dataSkippingNumIndexedCols
delta.dataSkippingStatsColumns

Explore delta log to see its effects £, parquet_fil

» part-00000-62044bb2-3828-48. ..

part-00001-3d136b1c-39e9-48. .

>

¥ part-00002-fic2c436-bdba-4f46. ..
¥ part-00003-ec107725-5e26-44c. ..
»

part-00004-33dd120c-0cal-4ac...

dMaDEUS | & databricks

,a.B‘c min_country_code

AD
DE
FR
IS

TR

,&.Et max_country_code

DE
FR
IS

TR

ZW

© Amadeus IT Group and its affiliates and subsidiaries

12

Dynamic File Pruning (DFP)

select

where

BIG table z-ordered on key

number of files pruned
Scan parquet (1) number of files read

rows output

NO DFP

Conditions for DFP to kick-in
— Databricks
— Broadcast join
— Configuration

dMaDEUS | & databricks

* from BIG join SMALL on BIG.key = SMALL.key

~AA AL . |
CMA ~e~Tliimn v —
AL L. « LULU MI I A = ...

Dynamic filter based on key values in the SMALL table
Filter pushed down to the scan phase of the BIG table

0 number of files pruned 17
18 Scan parquet (1) number of files read 1
12,556,824 rows output 732,374
DFP
CONFIG

spark.databricks.optimizer.dynamicFilePruning
spark.databricks.optimizer.deltaTableSizeThreshold
spark.databricks.optimizer.deltaTableFilesThreshold

13

© Amadeus IT Group and its affiliates and subsidiaries

Journey Tracker #3

M3: Introduced Z-Order and DFP for joins

Good cost reduction (-40%, mostly network) +/

e Bad surprise

o data skipping increased, but still low /\
o keys hitting most files

Where did the cost reduction come from?

o optimize + z-order data compression v
o co-locality of different versions for a given key

Next: focus on writes

dMaDEUS | & databricks

Cost

M1

M2 -40%
M3
M4
M5
Milestones

14

bsidiaries

nd su

© Amadeus IT Group and its affiliates a

Write Amplification (WA) and Deletion Vectors (DV)

* Observations
o Expected to update ~1% of rows (write)
o Expected to read 90% of rows
o Measured high cost of writes, why? A\

Copy on

1 1
1 1
1 1
1 1
1 1 o
rite | MERGE i Amplification!
: :
update 1% of 2 of 3 files
rows spread on 2 completely
parquet files rewritten

e Thanks Data & Al Summit 2023!

o Copy on Write & Merge on Read
o Predictive 1/0: Deletion Vectors + Photon

dMaDEUS | & databricks

_ How to assess WA? Use
=/ History operationMetrics

1

SQL

-- enable deletion vectors

ALTER TABLE table SET TBLPROPERTIES(
delta.enableDeletionVectors = truep;
-- simple upsert

MERGE INTO table USING miniBatch

ON table.id = miniBatch.1id

WHEN MATCHED THEN UPDATE SET #*

WHEN NOT MATCHED THEN INSERT #*;

SCALA

scala> table.history()/#*...*/.show()
- - - e i tomm e - +
| operation|numSourceRows |numOutputRows |
+--mm - e -t P e il +
| MERGE |10 \/' | 10 |
it e e +

15

© Amadeus IT Group and its affiliates and subsidiaries

Deletion Vectors (on Merge) and Photon

 Photon needed (DBR 13.3LTS)

— Enabled, but overall cost increased /\
e Thanks for the help Databricks!

* Photon underused A\
— Query not fully supported
— Incompatible Spark Settings A\

CONFIG

spark.memory.offHeap.enabled = false

e Enabled Off-Heap and...

— Deletion Vectors on Merge active v
— Photon much better used v/

dMaDEUS | & databricks

UDF (not supported by Photon)

pppppppppppp

ththththth

Stages: 18[0

uuuuuuu

¥Det

== Photon Ex

ails

planation ==

Photon does not fully
support the query

because: UDF

(name#24) is

not supported:...

Built-in function (supported)

¥Details

== Photon Explanation ==
The query is fully
supported by Photon.

16

© Amadeus IT Group and its affiliates and subsidiaries

Journey Tracker #4

M4: Enabled Photon and Deletion Vectors

* Good cost reduction (-50%) v/
 Spark Settings are good enough /
* Read amplification still biggest fish A\

dMaDEUS | & databricks

Cost

M1

M2
M3 |
,,,,, M4
I
Milestones

17

© Amadeus IT Group and its affiliates and subsidiaries

History consolidation

TABLE
key version [last
INPUT K1 1 false e Compute a patch
m — Join
] “ : talse — Window function
K1 4 K1l 3 truefalse)
* Merge it
K1l 4 true

/table/* .parquet

K1, .. K5, .. K9, .. .

* Most files contain at least one of the input keys A\ U

We only need to read the
version where last = true

* High read amplification A\

AMaDEUS | & databricks

© Amadeus IT Group and its affiliates and subsidiaries

Partition pruning to the rescue
TABLE

ey version __llast_____

INPUT K1 1 false
key | version — 2 false In JOIN & MERGE
K1 4 K1 3 truefalse TABLE.last = true
K1l 4 true
/table/last=false/*.parquet
97% | KL, .. K1, 3

/table/last=true/*.parquet

* Only read 3% of the data v/

3% == ... K1, 4
* Only do soft delete and append v

AMaDEUS | & databricks

bsidiaries

nd su

© Amadeus IT Group and its affiliates a

Journey Tracker #5

Cost
M5: Revised history consolidation

Huge cost reduction (-90%) v/
Target cost point reached v/

Lesson learned
o Technical + functional understanding = best performance

What's next in the journey?
o Share it at DAIS 2024 :)

M1

M2

M3

dMaDEUS | & databricks

Milestones

20

bsidiaries

nd su

© Amadeus IT Group and its affiliates a

Conclusions

A

Pilot

daily

cost M1: baseline
cost: 100%

(%)

consolidation
. / cost: 1%

-99%

M2 addressed thread contention

M3 z-order, dfp

M4 photon, dv
M5: revised history

AMaDEUS | & databricks

Milestones

Lessons learned

* Be ready to iterate v/

* Investigate rigorously v/
* Ask for help v/

 Be ambitious v/

21

© Amadeus IT Group and its affiliates and subsidiaries

dMaDEUS

hank you

https://github.com/AmadeusITGroup/spark-perf-hikes

Amadeus. It’s how travel works better.
22

© Amadeus IT Group and its affiliates and subsidiaries

DATA'Al SUMMIT

DATAAl SUMMIT ©2024 Databricks Inc. — All rights reserved 23

	DRASTICALLY REDUCING PROCESSING COSTS WITH DELTA LAKE
	About us
	Slide Number 3
	Our product
	Our cost reduction journey
	Journey Tracker #1
	Why is CPU usage so low?
	Addressing Thread Contention
	Journey Tracker #2
	Metrics Unlocking (Best Practices)
	Why are network costs so high?
	Z-ordering
	Dynamic File Pruning (DFP)
	Journey Tracker #3
	Write Amplification (WA) and Deletion Vectors (DV)
	Deletion Vectors (on Merge) and Photon
	Journey Tracker #4
	History consolidation
	Partition pruning to the rescue
	Journey Tracker #5
	Conclusions
	Thank you
	Slide Number 23

